CCR RULE GROUNDWATER MONITORING CERTIFICATION

COAL ASH PONDS ELMER SMITH STATION DAVIESS COUNTY OWENSBORO, KENTUCKY

Prepared For:

OWENSBORO MUNICIPAL UTILITIES OWENSBORO, KENTUCKY

Prepared By:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. PITTSBURGH, PENNSYLVANIA

CEC Project 164-014

OCTOBER 17, 2017

TABLE OF CONTENTS

Page

1.0	INT	RODUCTION	
	1.1	Purpose	. 1
2.0	SITE	COVERVIEW	3
	2.1	Background	3
	2.2	Hydrogeologic Setting	
		2.2.1 Hydrogeologic Characteristics	
3.0	GRO	OUNDWATER MONITORING SYSTEM	6
	3.1	Monitoring Well Selection	. 6
	3.2	Well Construction	7
	CD		0
4.0	GRC	OUNDWATER MONITORING CERTIFICATION	9

FIGURES

Figure 1 – Site Location Map
Figure 2 – Site & Vicinity Aerial Map
Figure 3 – Potentiometric Surface Map (June 29, 2017)

TABLE

Table 1 – Groundwater Elevation Summary

APPENDICES

Appendix A – CCR Rule Boring Logs and Well Construction Diagrams

1.0 INTRODUCTION

1.1 PURPOSE

The United States Environmental Protection Agency (USEPA) issued 40 CFR 257, Subpart D, *Disposal of Coal Combustion Residuals from Electric Utilities* (CCR Rule) on April 17, 2015. The CCR Rule regulates disposal of CCR in new and active landfills and impoundments.

The CCR Rule states the following criteria for a groundwater monitoring system (GMS) (40 CFR §257.91):

(a) *Performance standard*. The owner or operator of a CCR unit must install a GMS that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer that:

(1) Accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit. A determination of background quality may include sampling of wells that are not hydraulically upgradient of the CCR management area where:

(i) Hydrogeologic conditions do not allow the owner or operator of the CCR unit to determine what wells are hydraulically upgradient; or

(ii) Sampling at other wells will provide an indication of background groundwater quality that is as representative or more representative than that provided by the upgradient wells; and

(2) Accurately represent the quality of groundwater passing the waste boundary of the CCR unit. The downgradient monitoring system must be installed at the waste boundary that ensures detection of groundwater contamination in the uppermost aquifer. All potential contaminants must be monitored.

(b) The number, spacing, and depths of monitoring systems shall be determined based upon site-specific technical information that must include thorough characterization of:

(1) Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and

(2) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

(c) The GMS must include the minimum number of monitoring wells necessary to meet the performance standards specified in paragraph (a) of this section, based on the sitespecific information specified in paragraph (b) of this section. The GMS must contain:

(1) A minimum of one upgradient and three downgradient monitoring wells; and

(2) Additional monitoring wells as necessary to accurately represent the quality of background groundwater that has not been affected by leakage from the CCR unit and the quality of groundwater passing the waste boundary of the CCR unit.

The CCR Rule continues to outline well installation, development, sampling, and decommissioning requirements. The CCR Rule requires the owner or operator to obtain a certification from a qualified professional engineer stating that the GMS has been designed and constructed as outlined here. A record of the certification must be placed in the facility's operating record and the publicly accessible internet site and the state must be notified that the information is available.

Owensboro Municipal Utilities (OMU) installed a GMS at their CCR unit to comply with the CCR Rule. OMU retained Civil & Environmental Consultants (CEC) to assist with the design, installation and sampling of the GMS, and the preparation of this report. This report has been prepared to meet the GMS certification requirements of the CCR Rule.

2.0 SITE OVERVIEW

2.1 BACKGROUND

The Ash Pond area associated with the Elmer Smith Station (ESS) is less than 10 acres in size and consists of three separate unlined ash settling basins (Ponds 1, 2, and 3). A site location map and a site and vicinity aerial map showing the location of the ash ponds are provided as Figures 1 and 2, respectively. The basins are not used for the disposal of CCR but for the temporary storage of CCR material prior to being excavated and transported off-site for disposal or beneficial re-use. Pond 1 is used for Unit 1 boiler slag; Pond 2 receives all other ash as well as water plant blowdown (lime softening sludge); and, Pond 3 receives no ash directly and is used for final settling prior to discharge. Other plant discharges, including coal pile runoff, Flue Gas Desulfurization (FGD) blowdown, roof and floor drains, etc. are also conveyed through the ponds. Based on a review of aerial images, contour data from the USGS National Map, Owensboro East Quadrangle, and a site map prepared by others labeled "Structural Fill Finish Grading" dated August 28, 1962¹, the Ash Ponds appear to be incised in the native soils to a depth of approximately 8 feet below ground surface (bgs). This was confirmed through knowledge of site personnel.

Permanent groundwater monitoring wells were not previously installed at the ESS Ash Pond area and no prior groundwater monitoring had been conducted prior to the GMS installation. To comply with the Federal CCR Rule (Section 257.91) published April 17, 2015, permanent groundwater monitoring wells were installed to meet the GMS performance standard.

2.2 HYDROGEOLOGIC SETTING

Subsurface conditions encountered at the site, as evidenced by the soil borings advanced in association with a preliminary Hydrogeologic investigation and the permanent GMS wells, are consistent with Quaternary-aged alluvium, and buried outwash (Tazewell age) typically found within the Ohio River Valley². Variable thicknesses of fine-grained silt and clay lenses are

¹ Drawing No. S-7 "Structural Finish Grading", prepared by Black & Veatch, dated August 28, 1962.

interbedded with deposits of coarser-grained, poorly-graded sand beneath a thin veneer of topsoil, crushed stone fill, or other fill material. The near-surface fine-grained deposits are thicker near the Ohio River, and decrease in thickness away from the river towards the southeast, where sand becomes the predominant soil type. A low permeability clay layer was encountered at depths ranging from 26 to 43 feet bgs, varying in thickness from approximately 1 foot to over 16 feet, with an increasing trend in the thickness of this layer towards the south/southeast. The clay layer is underlain by saturated, coarse-grained deposits that constitute the uppermost aquifer at the site. Aquifer saturated thickness in the vicinity of the site ranges from approximately 60 to 100 feet². Based on the depth to groundwater and the depth of the Ash Ponds, it does not appear that groundwater is in direct communication with the Ash Ponds. Lithology encountered in the borings advanced for the monitoring wells that comprise the GMS is documented in the boring logs included in Appendix A.

2.2.1 Hydrogeologic Characteristics

Groundwater elevation data indicated static water elevations ranging from 347.86 feet above mean sea level (amsl) to 359.10 feet amsl during the most recent gauging event. Potentiometric data are summarized on Table 1 and shown on Figure 3.

Groundwater elevation measurements indicate that the groundwater flow direction is to the southeast at an approximate average hydraulic gradient of 0.004. This flow direction is contrary to the hydrogeologic setting where groundwater flow is typically towards the Ohio River. The southeasterly flow direction is interpreted to be a result of the pumping influence from the 11 nearby water production wells (Figure 2) associated with municipal water production operations at OMU's Cavin Water Treatment Plant, which has a capacity of up to 10 million gallons per day. Between the Cavin Plant and Water Plant A, which is located west of the Cavin Plant and draws from the same well field, OMU's total treatment capacity is 28 million gallons per day. Absent operation of the production wells, groundwater flow direction is likely to the northwest towards the Ohio River; however, some combination of pumping wells is always in

² Geohydrology and Simulation of Ground-Water Flow for the Ohio River Alluvial Aquifer near Owensboro, Northwestern Kentucky. U.S. Geological Survey Water-Resources Investigation Report 96-4274. 1997. Figure 7.

operation and all of the observed groundwater levels measured since the installation of the GMS (Table 1) indicate a southeasterly groundwater flow direction.

Hydraulic conductivity of the uppermost aquifer was not evaluated as part of the GMS installation process; however, based on published scientific reports, the site is located in an area where horizontal hydraulic conductivity values are estimated to range from 126 to 157 feet per day³.

³Geohydrology and Simulation of Ground-Water Flow for the Ohio River Alluvial Aquifer near Owensboro, Northwestern Kentucky. U.S. Geological Survey Water-Resources Investigation Report 96-4274. 1997. Figure 11.

3.0 GROUNDWATER MONITORING SYSTEM

3.1 MONITORING WELL SELECTION

The GMS consists of seven monitoring wells. Monitoring wells MW-1 and MW-3 are used to monitor groundwater elevation, and monitoring wells MW-2, MW-4, MW-5, MW-6, and MW-7 are utilized to monitor both groundwater elevation and quality. As noted above in Section 2.2.1, the well field pumping influence and proximity of the ponds to the Ohio River create a unique hydrogeologic setting where there is not an ideal location to establish background groundwater quality conditions (i.e., groundwater that does not have the potential to be affected by leakage from a CCR unit). Two monitoring wells (MW-2 and MW-7) will be used to establish and monitor background groundwater conditions.

While MW-2 is currently hydraulically upgradient, this is an artificial condition created by the operation of the production wells. Prior to the operation of the production wells (ca. 1998) this well was in a downgradient location. Also, should the production wells cease to operate in the future, groundwater flow direction would likely be reversed toward the river and MW-2 would be in a downgradient location. Because of this unique and artificial condition, the MW-7 location was also selected to accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit. MW-7, while located hydraulically downgradient from the ash ponds, is placed in a location so as not to be on a direct flow path from the ponds. MW-7 is also at a sufficient distance from the ponds to be representative of background conditions for the well field aquifer.

Downgradient monitoring wells MW-4, MW-5 and MW-6 will be used to monitor water quality of groundwater passing the waste boundary of the CCR unit. These wells were placed as close as possible to the waste boundary to provide for detection of groundwater contamination in the uppermost aquifer. Additionally, in the event that the well field should cease pumping operations for an extended period of time and the groundwater flow direction reverts back toward the river, monitoring wells MW-1 and MW-3 (currently used only for water level monitoring) can serve as future downgradient wells along with MW-2.

A summary of the GMS wells is provided in the table below.

Location	Relative Location	Well Diameter (in.)	Total Depth (ft-bgs)	Screen Length (ft)
MW 1	Upgradient	4	57	10
MW-2	Upgradient (Background)	4	57	10
MW-3	Upgradient	4	57	10
MW-4	Downgradient	4	59	10
MW-5	Downgradient	4	59	10
MW-6	Downgradient	4	59	10
MW-7	Downgradient (Background)	4	72	10

CCR RULE GROUNDWATER MONITORING SYSTEM

3.2 WELL CONSTRUCTION

The wells are completed in unconsolidated sand and gravel deposits associated with the Ohio River Valley alluvium and outwash complex. Each of the GMS wells was advanced using hollow-stem augers and constructed of 4-inch diameter schedule 40 polyvinyl chloride (PVC) casing with 10 feet of 0.010-inch slotted well screen and solid riser extended to a height of approximately 2.5 feet above the ground surface (reference Appendix A). Well screens were placed to monitor the uppermost aquifer. Each of the well screens was constructed using U-Pack[®] double-walled screens instead of traditional single-walled screens to assist with the collection of low turbidity groundwater samples. The U-Pack[®] screens were filled with sand filter media (silica sand) along the length of the screen prior to lowering it into the borehole to prevent installation of the filter sand through a turbid water column, which can entrain sediment in the filter pack. Global Drilling Suppliers, Inc. #7 filter sand was utilized within the U Pack[®] screens. As the augers were extracted at each monitoring well location, the annular space between the borehole and the U-Pack[®] well screen was backfilled with Global Drilling Suppliers, Inc. #5 filter sand from the base of the screen to approximately 2 feet above the screen. Coated bentonite pellets were then placed in the annulus and hydrated with potable water to construct an approximate 5-foot thick seal above the filter pack. Bentonite grout was then placed via tremie pipe from the top of the seal to ground surface

elevation. Each well is completed with a locking steel protective cover, concrete pad, and protective bollards. The Kentucky AKGWA Well Identification label is affixed to the underside of each protective cover lid. After construction, the wells were developed via a combination of surging, bailing and pumping techniques to clean the screens, reduce turbidity, and establish communication with the aquifer.

4.0 GROUNDWATER MONITORING CERTIFICATION

CCR Impoundment Information

Name: Elmer Smith Station Ash Ponds

Operator: Owensboro Municipal Utilities

Address: 4301 E 4th Street Owensboro, Kentucky 42303

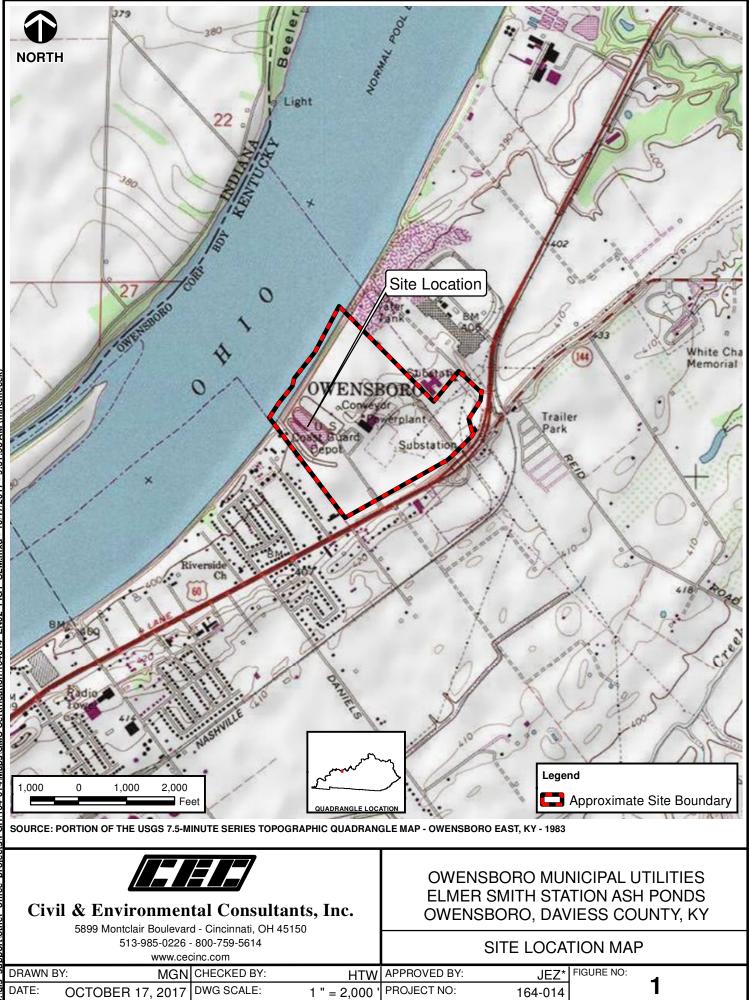
Qualified Professional Engineer:

Name:	James E. Zentmeyer
Company:	Civil & Environmental Consultants

I, James E. Zentmeyer, certify that this Groundwater Monitoring System for the Elmer Smith Station Ash Ponds has been designed and constructed to meet the requirements of the Coal Combustion Residual (CCR) rule 40 CFR §257.91. I am a duly licensed Professional Engineer under the laws of Kentucky.

Print Name: James E. Zentmeyer	anna tha tha tha tha tha that the state of t
Signature: E G	ALE OF KEN FURTHER
Date: 10 17 17	JAMES E.
License Number: 18953	CENSE
My license renewal date is: 6/30/2018	MANDONAL EPACE

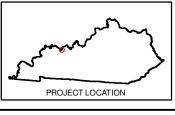
Qualified Professional Geologist


Quanneu Fior	essional debiogist.
Name:	Matthew G. Nemecek
Company:	Civil & Environmental Consultants

I, Matthew G. Nemecek, certify that this Groundwater Monitoring System for the Elmer Smith Station Ash Ponds has been designed and constructed to meet the requirements of the Coal Combustion Residual (CCR) rule 40 CFR §257.91. I am a duly licensed Professional Geologist under the laws of Kentucky.

Print Name: <u>Matthew G. Nemecek</u>
Signature: Matthew and
Date: October 17, 2017
License Number: KY-2522

My license renewal date is September: 30, 2019


FIGURES

Signature on File

SOURCE: ESRI WORLD IMAGERY / ARCGIS MAP SERVICE: HTTP://GOTO.ARCGISONLINE.COM/MAPS/WORLD_IMAGERY. LAST ACCESSED: 10/17/2017 IMAGE DATE: 5/19/2016

Civil & Environmental Consultants, Inc.	OWENSBORO MUNICIPAL UTILITIES ELMER SMITH STATION ASH PONDS OWENSBORO, DAVIESS COUNTY, KY			
5899 Montclair Boulevard - Cincinnati, OH 45150 513-985-0226 - 800-759-5614 www.cecinc.com	SITE AND VICINITY AERIAL MAP WITH GMS WELLS			
DRAWN BY: MGN CHECKED BY: HTW				
DATE: OCT 17, 2017 SCALE: 1 " = 400	'PROJECT NO: 164-014			

Legend

Approximate Site Boundary

OMU Municipal Production Well

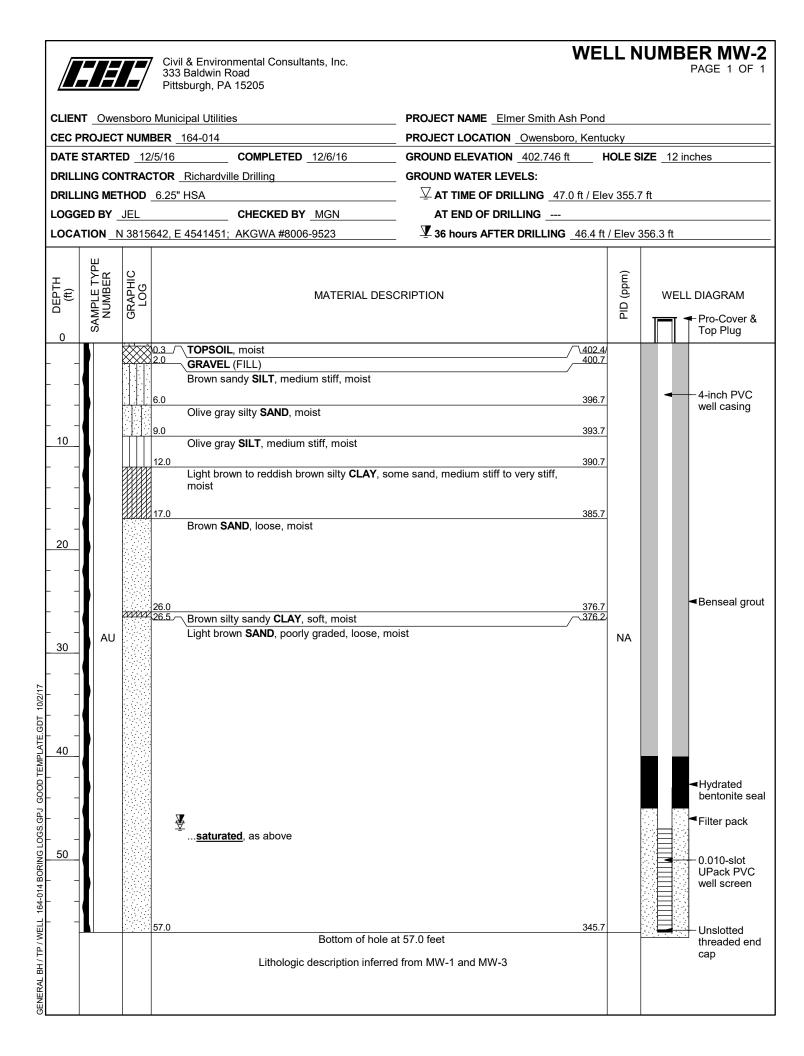
GMS Monitoring Well

Signature on File *

TABLE

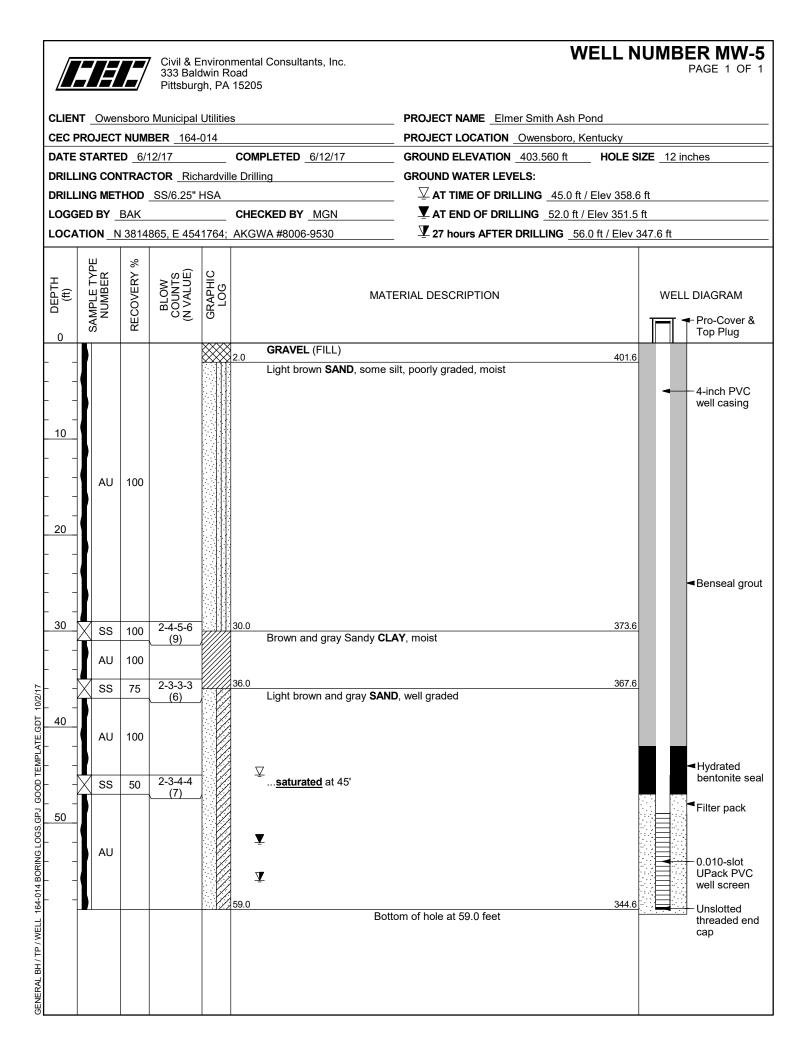
TABLE 1

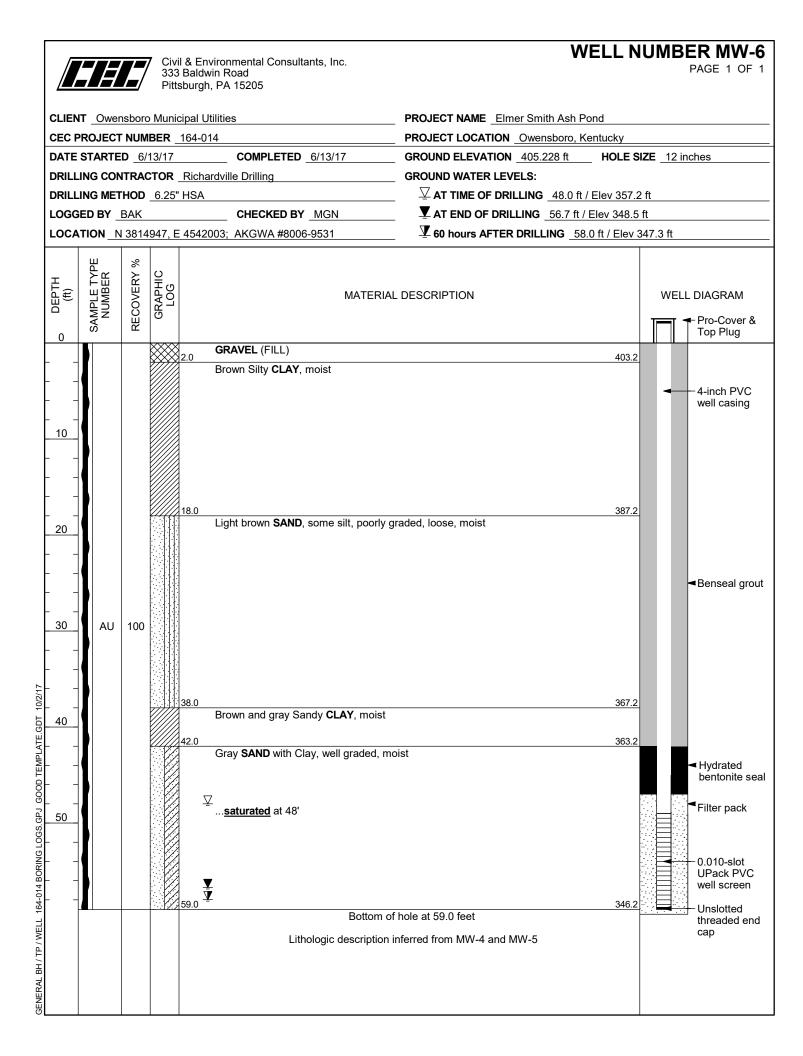
Groundwater Elevation Summary OMU Elmer Smith Station Ash Ponds Owensboro, KY (all measurements are in feet)

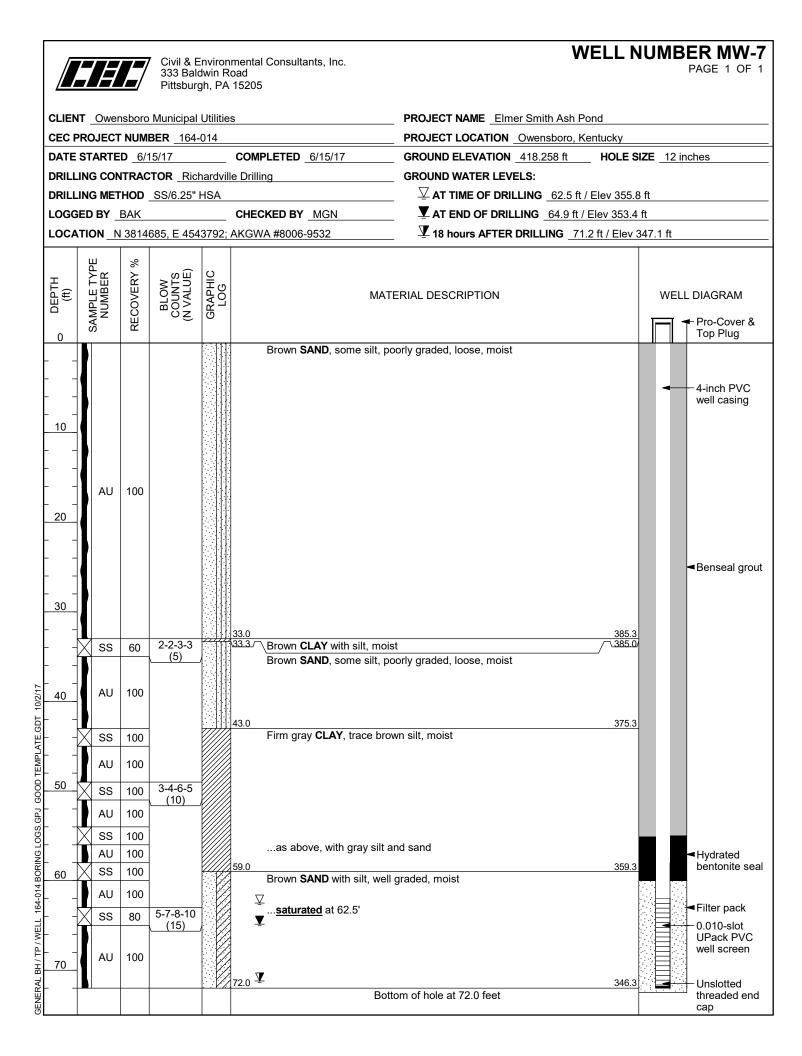

Well ID (AKGWA #)	Location Relative to Ash Ponds	Ground Surface Elevation (AMSL)	TOC Elevation (AMSL)	Measurement Date	Depth to Water Measurement (ft BTOC)	Groundwater Elevation (AMSL)
				12/8/2016	48.51	356.02
				12/13/2016	48.07	356.46
				2/8/2017	45.69	358.84
MW-1	Unandiant	402.00	404.53	3/8/2017	40.68	363.85
(8006-9522)	Upgradient	402.00	404.55	4/6/2017	43.51	361.02
				5/3/2017	45.91	358.62
				6/16/2017	49.94	354.59
				6/29/2017	46.72	357.81
				12/8/2016	49.21	356.34
				12/13/2016	48.74	356.81
				2/8/2017	46.29	359.26
MW-2	Upgradient	402 75	105 55	3/8/2017	41.24	364.31
(8006-9523)	(Background)	402.75	405.55	4/6/2017	44.16	361.39
				5/3/2017	45.48	360.07
				6/16/2017	50.02	355.53
				6/29/2017	47.17	358.38
		402.50	406.39	12/8/2016	49.88	356.51
				12/13/2016	49.43	356.96
				2/8/2017	46.95	359.44
MW-3				3/8/2017	41.64	364.75
(8006-9524)	Upgradient	403.78		4/6/2017	44.56	361.83
				5/3/2017	45.90	360.49
				6/16/2017	50.06	356.33
				6/29/2017	47.29	359.10
				12/8/2016	54.44	353.58
		105.44	400.02	12/13/2016	54.06	353.96
				2/8/2017	51.22	356.80
MW-4	Demonstration			3/8/2017	52.97	355.05
(8006-9525)	Downgradient	406.44	408.02	4/6/2017	54.99	353.03
				5/3/2017	55.75	352.27
				6/16/2017	58.65	349.37
				6/29/2017	57.60	350.42
MW-5	Dermontin	102 50	406.16	6/16/2017	56.37	349.79
(8005-9530)	Downgradient	403.56	406.16	6/29/2017	56.66	349.50
MW-6	Dama I'	405.22	407.25	6/16/2017	57.96	349.39
(8006-9531)	Downgradient	405.23	407.35	6/29/2017	57.40	349.95
MW-7	Downgradient	419.26	401.11	6/16/2017	72.90	348.21
(8006-9532)	(Background)	418.26	421.11	6/29/2017	73.25	347.86

Notes: AMSL = Above Mean Sea Level TOC = Top of Casing Ft BTOC = Feet Below Top of Casing

APPENDIX A


BORING LOGS & WELL CONSTRUCTION DIAGRAMS


333	ril & Environmental Consultants, Inc. 3 Baldwin Road Isburgh, PA 15205	V	WELL	NUMBER MW PAGE 1 O
CLIENT Owensboro Muni	cipal Utilities	PROJECT NAME Elmer Smith Ash	Pond	
CEC PROJECT NUMBER	164-014	PROJECT LOCATION _Owensboro,	Kentucky	,
DATE STARTED 12/5/16	COMPLETED <u>12/5/16</u>	GROUND ELEVATION 402.00 ft	HOLI	E SIZE _12 inches
DRILLING CONTRACTOR	Richardville Drilling	GROUND WATER LEVELS:		
DRILLING METHOD Hydr	aulic Push/6.25" HSA	$\overline{\Box}$ AT TIME OF DRILLING 47.0	ft / Elev 35	55.0 ft
LOGGED BY JEL	CHECKED BY MGN	AT END OF DRILLING		
LOCATION <u>N 3815477, E</u>	E 4541324; AKGWA #8006-9522	$\underline{\Psi}$ 72 hours AFTER DRILLING \underline{A}	16.0 ft / Ele	ev 356.0 ft
DEPTH (ft) (ft) (ft) SAMPLE TYPE NUMBER NUMBER RECOVERY % GRAPHIC LOG	MATERIAL DI	ESCRIPTION	PID (nnm)	WELL DIAGRAM
	0.3_/_\ TOPSOIL , moist		\401.7/ NI	
	Brown sandy SILT , medium stiff, mois	/		_
			N/	_
DP 100			N	well casing
DP 100	8.5		393.5 N/	A
10 DP 100	Olive gray silty SAND , moist		391.5 N/	A
	12.0 Olive gray SILT , medium stiff, moist		390.0 N	A Benseal gr
6 90 DP	Light brown to reddish brown silty CLA stiff, moist	AY , some sand, medium stiff to very	N	
X 7 90			N	A
DP 8 100			N	A
20 DP 100			N	A
20 9 DP 90	21.0		380.3 N	_
10 10 11111 DP 90	Brown SAND, loose, moist		<u> </u>	_
11 DP 75				_
12	26.0 26.5 Brown silty CLAY , soft, very moist	/	376.0 N/	
	Brown SAND, loose, poorly graded, m	oist, as above		_
30 DP 70			N	_
14 70 DP			N	A
DP			N	A
X 16 80			N	A
DP 17 100			N	A
40 DP 18 100			N	A
DP 70			N	A
19 DP 70			N	A Hydrated bentonite s
20 DP 75			N	A
21 DP 75	\mathbf{V}		N	
	<u>saturated</u> , as above, becoming mor	e well-graded	N	
			N	
			N/	
25 75 DP 150	57.0		345.0 N/	
26 DP 27		le at 57.0 feet	<u></u>	A Unslotted threaded e cap
DP 28 DP 29				



	333	l & Environmental Consultants, Inc. Baldwin Road sburgh, PA 152050	N	/ELL I	PAGE 1 OF
CLIENT Owe	ensboro Munic	sipal Utilities	PROJECT NAME Elmer Smith Ash P	ond	
CEC PROJEC	T NUMBER	164-014	_ PROJECT LOCATION _ Owensboro, K	Kentucky	
DATE START	ED 12/5/16	COMPLETED <u>12/5/16</u>	_ GROUND ELEVATION _403.77 ft	HOLE	SIZE 12 inches
DRILLING CO	NTRACTOR	Richardville Drilling	GROUND WATER LEVELS:		
DRILLING ME	THOD Hydra	aulic Push/6.25" HSA	_ \Box AT TIME OF DRILLING _47.0 ft.	/ Elev 356	.8 ft
LOGGED BY	JEL	CHECKED BY MGN	AT END OF DRILLING		
	N 3815758, E	4541533; , AKGWA #8006-9524	_ Ψ 60 hours AFTER DRILLING 47	'.3 ft / Elev	' 356.5 ft
TH E TYPE	ERY % PHIC	MATERIAL		(mqq)	
(ft) SAMPLE TY NUMBEF	RECOVERY 9 GRAPHIC LOG	MATERIALI	DESCRIPTION	I) OIA	WELL DIAGRAM
0 V DP		<u>0.3_/</u> TOPSOIL , moist		103.5/ NA	
		2.0 GRAVEL (FILL)		101.8 NA	-
2		4.0 Brown SILT, some sand, some grave Brown to olive gray silty SAND, loose		399.8 NA	
		DIGWIN TO DIVE GRAY SILLY SAND, 100SC	5, III015t	NA	- 4-inch PVC well casing
		8.8	3	NA 895.0	-
10 🛆 DP		Olive gray to reddish brown clayey S		NA	_
	100			NA	
	70	13.8		390.0 NA	
X 7	70	Reddish brown SAND , loose, poorly	graded, moist	NA	
	75	10.2		NA	
	1 1 1 1 1 1 1 1 1	<u>18.3</u> ^{19.0}		^{385.5} NA	
20 9 DP		Brown SAND , loose, poorly graded,		NA	
				NA	-
11		25.5			- Densed
DP 12		25.5 26.5 Brown sandy SILT , soft, moist		378.3 NA 377.3 NA	-
X DP	70	Brown SAND, loose, poorly graded,	moist, as above	NA	-
30 DP				NA	_
14 DP	70			NA	_
15 DP	70			NA	
X 16	70			NA	
DP 17	70			NA	
40 DP	70			NA	
DP				NA	
19 DP	70			NA	Hydrated bentonite se
				NA	
21		¥		NA	Filter pack
		<u>saturated</u> , as above, becoming mo	ore well-graded		
50 / DP	90			NA	
				NA	UPack PVC well screen
24 DP				NA	
X 25	67	57.0	-	NA NA	
DP 26 DP 27		57.0 Bottom of h	ole at 57.0 feet	346.8 NA	Unslotted threaded end cap
DP 28 DP 29					

	33	33 Baldwir	ronmental Consultants, Inc. n Road PA 15205		WEI	LL NU	PAGE 1 OF 1
CLIENT Owe	nsboro Mur	nicipal Util	ities	_ PROJECT NAME _ Elmer Smith	Ash Pond		
	T NUMBER	164-014	l	PROJECT LOCATION Owensb	oro, Kentu	icky	
DATE STARTE	ED 12/5/16	6	COMPLETED 12/7/16	GROUND ELEVATION 406.442	2 ft H	IOLE SIZ	E 12 inches
			dville Drilling				
			sh/6.25" HSA		l9.0 ft / Ele	ev 357.4 ft	t
			CHECKED BY MGN				
			37; AKGWA #8006-9525				
DEPTH (ft) SAMPLE TYPE NUMBER	RECOVERY % GRAPHIC	20	MATERIAL D	DESCRIPTION		PID (ppm)	WELL DIAGRAM
	75 💥		GRAVEL (FILL)		404.4	NA	
	75	X 2.0	Brown silty CLAY , some gravel, som	e sand, stiff, moist	404.4	NA	
	90	X/4.0	Brown sandy SILT grading to silty SA		402.4	NA	4-inch PVC
3	90				200.4	NA	well casing
	100	8.0	Light brown SAND , some silt, poorly	graded, loose, moist	398.4	NA	
	100					NA	
	70					NA	
	70					NA	
7	75					NA	
	75					NA	
20 DP 9	70					NA	
	70					NA	
10 DP	70					NA	■Benseal grou
	70					NA	
12	70					NA	
30 DP 13	70					NA	
	70					NA	
14 DP	70					NA	
15 DP	70						
		38.5			367.9	NA	
40 DP 17	70		Brown to olive gray silty CLAY , some light brown, poorly graded sand se			NA	
-X DP 18	84		Light gray, medium stiff, moist, as			NA	
-X DP	100					NA	 Hydrated bentonite sea
- 19 - DP	100		and distribution of the state			NA	
	100	49.0 ▽	reddish brown, sandy, medium stif	, moist, as above	357.4	NA	Filter pack
50 21			Light brown SAND , poorly graded, so	me clay, wet at 49'			
	57	V V				NA	
	96					NA	0.010-slot
_V SS	57					NA	UPack PVC well screen
- <u>24</u> SS							
60 25 SS	100					NA	Unslotted threaded end
-/ 26	100	63.0			343.4	NA	сар
SS 27			Bottom of he	ble at 63.0 feet			
SS 28 SS 29							

